Challenges and Recent Progress of Nano Sized Drug Delivery Systems for Lung Cancer Therapy: A Review

  • Kinjal Patel
  • Kartik Patel

Abstract

Lung cancer is the most malignant cancer today. The treatment of lung cancer continues to be a challenge for oncologists. The direct delivery of chemotherapeutic agents to the lungs could represent a novel therapeutic approach for patients with pulmonary metastases. Currently, many formulations of nanocarriers are utilized including lipid-based, polymeric and branched polymeric, metal-based, magnetic, and mesoporous silica. Innovative strategies have been employed to exploit the multicomponent, three-dimensional constructs imparting multifunctional capabilities. In lung cancer, nanoparticle-based therapeutics is paving the way in the diagnosis, imaging, screening, and treatment of primary and metastatic tumors. This review summarizes current progress and challenges in nanoparticle-based drug delivery systems, citing recent examples targeted at lung cancer treatment.

Keywords: Lung Cancer, Nano Drug Delivery, Target Drug delivery

References

1. Goel A, Baboota S, Sahni JK, Ali J. Exploring targeted pulmonary delivery for treatment of lung cancer. Int J Pharm Investig. 2013;3(1):8-14.
2. Silva CO, Pinho JO. Current Trends in Cancer Nanotheranostics: Metallic, Polymeric, and Lipid-Based Systems. 2019;11(1).
3. Sharma G, Sharma AR, Lee SS, Bhattacharya M, Nam JS, Chakraborty C. Advances in nanocarriers enabled brain targeted drug delivery across blood brain barrier. International journal of pharmaceutics. 2019;559:360-72.
4. Tapeinos C, Battaglini M, Ciofani G. Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases. Journal of controlled release : official journal of the Controlled Release Society. 2017;264:306-32.
5. Patel J, Amrutiya J, Bhatt P, Javia A, Jain M, Misra A. Targeted delivery of monoclonal antibody conjugated docetaxel loaded PLGA nanoparticles into EGFR overexpressed lung tumour cells. J Microencapsul. 2018;35(2):204-17.
6. Raucher D, Dragojevic S, Ryu J. Macromolecular Drug Carriers for Targeted Glioblastoma Therapy: Preclinical Studies, Challenges, and Future Perspectives. Frontiers in oncology. 2018;8:624.
7. Angelova A, Garamus VM, Angelov B, Tian Z, Li Y, Zou A. Advances in structural design of lipid-based nanoparticle carriers for delivery of macromolecular drugs, phytochemicals and anti-tumor agents. Advances in colloid and interface science. 2017;249:331-45.
8. Ding J, Feng M, Wang F, Wang H, Guan W. Targeting effect of PEGylated liposomes modified with the Arg-Gly-Asp sequence on gastric cancer. Oncology reports. 2015;34(4):1825-34.
9. Bhatt P, Lalani R, Vhora I, Patil S, Amrutiya J, Misra A, et al. Liposomes encapsulating native and cyclodextrin enclosed paclitaxel: Enhanced loading efficiency and its pharmacokinetic evaluation. International Journal of Pharmaceutics. 2018;536(1):95-107.
10. Beltrán-Gracia E, López-Camacho A, Higuera-Ciapara I, Velázquez-Fernández JB, Vallejo-Cardona AA. Nanomedicine review: clinical developments in liposomal applications. Cancer Nanotechnology. 2019;10(1):11.
11. Yewale C, Baradia D, Patil S, Bhatt P, Amrutiya J, Gandhi R, et al. Docetaxel loaded immunonanoparticles delivery in EGFR overexpressed breast carcinoma cells. Journal of Drug Delivery Science and Technology. 2018;45:334-45.
12. Vhora I, Lalani R, Bhatt P, Patil S, Patel H, Patel V, et al. Colloidally Stable Small Unilamellar Stearyl Amine Lipoplexes for Effective BMP-9 Gene Delivery to Stem Cells for Osteogenic Differentiation.AAPS PharmSciTech 2018, 19, 3550–3560.
13. Yao X, Panichpisal K, Kurtzman N, Nugent K. Cisplatin Nephrotoxicity: A Review. The American Journal of the Medical Sciences. 2007;334(2):115-24.
14. Bae KH, Lee JY, Lee SH, Park TG, Nam YS. Optically Traceable Solid Lipid Nanoparticles Loaded with siRNA and Paclitaxel for Synergistic Chemotherapy with In situ Imaging. Advanced Healthcare Materials. 2013;2(4):576-84.
15. Ehrlich P, Himmelweit F. The collected papers of Paul Ehrlich : in four volumes, including a complete bibliography. London; New York: Pergamon Press; 1956.
16. Zhou J, Atsina K-B, Himes BT, Strohbehn GW, Saltzman WM. Novel delivery strategies for glioblastoma. Cancer J. 2012;18(1):89-99.
17. Lalani RA, Bhatt P, Rathi M, Misra A. Abstract 2063: Improved sensitivity and in vitro efficacy of RGD grafted PEGylated gemcitabine liposomes in RRM1 siRNA pretreated cancer cells. Cancer Research. 2016;76(14 Supplement):2063-p.
18. Bhatt P, Vhora I, Patil S, Amrutiya J, Bhattacharya C, Misra A, et al. Role of antibodies in diagnosis and treatment of ovarian cancer: Basic approach and clinical status. J Control Release. 2016;226:148-67.
19. Manish G, Vimukta S, editors. Targeted drug delivery system: A Review; 2011.
20. Patel P, Hanini A, Shah A, Patel D, Patel S, Bhatt P, et al. Surface Modification of Nanoparticles for Targeted Drug Delivery. In: Pathak YV, editor. Surface Modification of Nanoparticles for Targeted Drug Delivery. Cham: Springer International Publishing; 2019. p. 19-31.
21. Vhora I, Patil S, Bhatt P, Gandhi R, Baradia D, Misra A. Receptor-targeted drug delivery: current perspective and challenges. Ther Deliv. 2014;5(9):1007-24.
22. Xie J, Xiao D, Zhao J, Hu N, Bao Q, Jiang L, et al. Mesoporous Silica Particles as a Multifunctional Delivery System for Pain Relief in Experimental Neuropathy. Adv Healthc Mater. 2016;5(10):1213-21.
23. Hemal Tandel PB, Keerti Jain, Aliasgar Shahiwala, Ambikanandan Misra. In-Vitro and In-Vivo Tools in Emerging Drug Delivery Scenario: Challenges and Updates. In: Misra ASA, editor. In-Vitro and In-Vivo Tools in Drug Delivery Research for Optimum Clinical Outcomes. Boca Raton:CRC Press; 2018.
24. Dhanikula AB, Panchagnula R. Localized paclitaxel delivery. International journal of pharmaceutics. 1999;183(2):85-100.
25. Carstens MG, de Jong PH, van Nostrum CF, Kemmink J, Verrijk R, de Leede LG, et al. The effect of core composition in biodegradable oligomeric micelles as taxane formulations. European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2008;68(3):596-606.
26. Martin YC. Exploring QSAR:  Hydrophobic, Electronic, and Steric Constants C. Hansch, A. Leo, and D. Hoekman. American Chemical Society, Washington, DC. 1995. Xix + 348 pp. 22 × 28.5 cm. Exploring QSAR:  Fundamentals and Applications in Chemistry and Biology. C. Hansch and A. Leo. American Chemical Society, Washington, DC. 1995. Xvii + 557 pp. 18.5 × 26 cm. ISBN 0-8412-2993-7 (set). $99.95 (set). Journal of Medicinal Chemistry. 1996;39(5):1189-90.
27. Seedher N, Bhatia S. Solubility enhancement of Cox-2 inhibitors using various solvent systems. AAPS PharmSciTech. 2003;4(3):E33-E.
28. Hansch C, Leo A, Hoekman D, editors. Exploring QSAR: Hydrophobic, electronic, and steric constants. Washington, DC: American Chemical Society; 1995.
29. Bao G, Mitragotri S, Tong S. Multifunctional Nanoparticles for Drug Delivery and Molecular Imaging. Annual Review of Biomedical Engineering. 2013;15(1):253-82.
30. Oake A, Bhatt P, Pathak YV. Understanding Surface Characteristics of Nanoparticles. In: Pathak YV, editor. Surface Modification of Nanoparticles for Targeted Drug Delivery. Cham: Springer International Publishing; 2019. p. 1-17.
Statistics
1428 Views | 1521 Downloads
How to Cite
Patel, K., and K. Patel. “Challenges and Recent Progress of Nano Sized Drug Delivery Systems for Lung Cancer Therapy: A Review”. Himalayan Journal of Health Sciences, Vol. 5, no. 4, Dec. 2020, pp. 58-62, doi:10.22270/hjhs.v5i4.85.
Section
Review Article (s)