BIOCHEMICAL AND PHYSIOLOGICAL CHANGES OF CALLUS GROWTH AND LYCOPENE PIGMENT PRODUCTION FROM TOMATO (Lycopersicon esculentum Mill.) UNDER DROUGHT STRESS

  • Talib Khashan Kareem Faculty of science, University of Kufa, Kufa, Iraq
  • Abbas Tikki Karrar The University College of Humanities, Najaf, Iraq

Abstract

This experiment was conducted in faculty of Science labs, Kufa University, carried out during 2015 to applied methods for extraction, purification and Quantitative of Lycopene red pigments, from callus tissue and tomato fruits mother plant (Lycopersicon esculentum Mill).This study include of three parts, Firstly; Tomato seeds(Supper queen) hybrid were germinated in free MS medium and callus induction from shoot tip (3cmpieces) by using MS medium supplemented with Dichlorophenoxiactic acid (2,4-D) at different concentration (0.5,1, 1.5mg/l)with benzyl adenine (BA) at concentration of (0.3 mg/l). Secondly; identically callus fresh weight re-cultured in the same MS medium supplemented with high molecular weight polyethylene glycol (PEG) was used as selective agent at level of (5,10,15 and 25%). Thirdly; comparisons study were made between in vitro and in vivo grown plant. Powder of control lycopene used as standard solution. The content of lycopene was done by using high performance liquid chromatography (HPLC), and compare of the quantitatively of lycopene with these content in fruits of mother plant, and callus tissue. Also, include alcohol extraction of Lycopene from tomato fruit by using acetone and hexane mixture. The result showed significant increased (P< 0.05) of lycopene production and the superiority of lycopene content in callus than the content in fruits of mother plant. Antioxidant enzymes activity like Catalase (CAT),Guaiacol peroxidise (POX) and Superoxide dismutase(SOD) were high in callus under drought stress than in fruit of mother plant. However, Proline and total sugar content were at higher levels in callus under drought stress than in fruit of mother plant.

Keywords: Culture media, callus, CAT, POX, SOD, Lycopene pigment

References

1. Veroneca, N., Carmen, G.,B egona, B., Yun,H. &
Alyson, E. Non-galloylated and galloylated
Proanthocyanidin oligomers in Grape seeds from Vitis
vinifera L.cv. Graciano, Tempranillo and Cabernet
Sauvignon. University of califrnia, Davis. J. Sci. Food
Agric. 2006; 86:915-21.
2. Rao, A. V. Lycopene, tomatoes and the prevention of
coronary heart disease. Exp. Biol. Med. 2002; 227:
908–13.
3. Raziuddin, Shah, S. S., Chaudhary, H. J., Mohammad,
T. & Ali, S. Hormonal effect on callus induction in
tomato. Sarhad J. Agri. 2004; 20:223-25.
4. Perkins-Veazie, P., Collins, J. K., Pair, S. D. &
Roberts, W. Lycopene content differs among redfleshed
watermelon cultivars. J. Sci. Food Agric.
2001; 81:983–87.
5. DiMascio, P., Aaiser, S., & Sies, H. Lycopene as the
most effective biological carotenoid singlet oxygen
quencher. Arch. Biochem. Biophys. 1989; 274:532–
38.
6. Bunghez, R., Raduly, M., Doncea, S., Aksahin, I. &
Ion. Lycopene determination in tomatoes by different
spectral techniques (UV-VIS, FTIR and HPLC).
Digest Journal of Nanomaterials and Bio-structures.
2011; 6 (3):1349-56.
7. Chandrika, UG., Fernando, KS, Ranaweera KK.
Carotenoid content and in vitro bioaccessibility of
Lycopene from guava (Psidium guajava) and
watermelon (Citrullus lanatus) by HPLC diode array
detection. Int. J. Food Sci. Nutr. 2009; 60: 558–66.
8. Chauhan1,K., Sharma ,S., Agarwal, N. & Chauhan, B.
Lycopene of tomato fame: Its role in health and
disease. India. 2011; 10(1):99-155.
9. Al-Wandawi, H., Abdul Rahman, M. & Al-Shaikhly,
K. Tomato processing wastes as essential raw
materials source. J. Agric. Food Chem. 1985; 33:804–
7.
10. Canene-Adams, K., Campbell, J K., Zaripheh, S.,
Jeffery, E H. & Erdman, J. W. Jr. The tomato as a
functional food. J.Nutr. 2005; 135: 1226–30.
11. Afshari, R. T., Angoshtari, R. & Kalantari, S. Effects
of lightand different plant growth regulators on
induction of callus growth in rapeseed (Brassica
napus L.) genotypes. Plant Omics. J. 2011; 4(2):60-7.
12. Jaleel, CA., Manivannan, PV., Wahid, A., farooq, M.,
Al-juburi, H., Somasundaram, R., & Vam, RP.
Drought Stress in Plants: A Review on Morphological
Characteristics and Pigments Composition.
International journal of agriculture & biology. 2009;
11 (1): 100–5.
13. Rao, S. & Jabeen, F. In vitro selection and
characterization of polyethylene glycol (PEG) tolerant
callus lines and regeneration of plant lets from the
selected callus lines in sugarcane (Saccharum
officinarum L.). 2013 Jun; 19(2):261–68.
14. Shatnawi, M A. Micro propagation and germplasm
storage of Prunus amygdalus by the vitrification
method. Jordan J. Agric. Sci. 2006; 2(3):222-33.
15. Giri, A. & Narasu, M L. Transgenic hairy roots: recent
trends and applications. Biotechnology Advances.
2000; 18:1-22.
16. Guillon, S., Tremouillaux-Guiller, J., Pati, P K.,
Rideau, M. & Gantet, P. Harnessing the potential of
hairy roots: dawn of a new era. Trends. Biotechnol.
2006; 24:403-9.
17. Leontowicz, H et al. Soil applied propiconazole
alleviates the impact of salinity on Catharanthus
roseus by improving antioxidant status. Pestic.
Biochem. Physiol. 2008; 135-9.
18. Kalt, W. Effects of production and processing factor
on major fruit and vegetable antioxidants. J. Food Sci.
2005; 70:11–9.
19. AOAC. Official Methods of Analysis. Howitz. (2ed.).
1980; pp 734-40.
20. Abou Dahab, AM. In vitro propagation of Hydrangea
macrophylla Thunb. Ornamental Horticulture
Department, Faculty of Agriculture, Cairo University.
Giza, Egypt.2006.
21. Murashige, T. & Skoog, F. A revised medium for
rapid growth and bioassays with tobacco tissue
cultures. Physol. Plant. 1962; 15:473-97.
22. Mohammed, AN., Ismail, AR., Kadir, M. A. & Saud,
HM. In vitro performances of hypocotyl and
cotyledon explants of tomato cultivars under sodium
chloride stress. Afr. J. Biotechnol. 2011; 10 (44):8757-
64.
23. Watanabe, S., Kojima, K., Ide, Y. & Satohiko, S.
Effects of saline and osmotic stress on proline and
sugar accumulation in Populuseuphratic in vitro.
Plant Cell, Tissue and Organ Culture. 2000;
63(3):199-206.
24. Perez, LMR., Borges, JH., Delgado, MAR. & Miquel,
TB. Spectrophotometric analysis of Lycopene in
tomatoes and watermelons. The chemical educator.
2008; 13 (1):1-4.
25. Mritunjay, K., Mondal, D. & Dan, A. Quantification
of Catechin and Lycopene in Calendula officinalis
Extracts using HPLC methods. Asian J. Pharm. Clin.
Res. 2011; 4: 128-9.
26. Bates, L., Waldren, R. P. & Teare, ID. Rapid
determination of free proline for water stress studies.
Plant Soil. 1973; 39:205-7.
27. Krishnaveni, S., Theymoli, B. & Sadasivam, S. Food
Chem. 1984; 15.
28. Chandlee, J M. & Scandalios, J G. Analysis of
variants affecting the catalase development program
in maizscutellum Theor. Appl. Genetics. 1984; 69:71–
7.
29. Kumar, KB. & Khan, PA. Peroxidase and Polyphenol
oxidase in excised ragi Elaucine coracona cv. 2020
leaves during senescence Indian. Expt. Bot. 1982;
20:412–16.
30. Grusak, M A., Rogers, R B., Yousef, G G., Erdman, J
W. Jr., Lila, M A. An. enclosed chamber labeling
system for the safe 14C-enrichment of
phytochemicals in plant cell suspension cultures. In
Vitro Cell Dev. Biol. Plant. 2004; 40: 80-5.
31. SAS Institute (1992). SAS/STAT users guide. Vol. I:
Release 6.0 3ed. SAS Institute Inc. Cary, NC. USA.
32. Sairam, R K., Rao, K V. & Srivastava, G C.
Differential response of wheat genotypes to long-term
salinity stress in relation to oxidative stress,
antioxidant activity and osmolyte concentration. Plant
Sci. 2002; 163:1037-46.
33. Errabii, T., Gandonou, C. B., Essalmani, H., Abrini, J.,
Idaomar, M. & Senhaji, N S. Growth, proline and ion
accumulation in sugarcane callus cultures under
drought-induced osmotic stress and its subsequent
relief. Afri. J.Biotechnol.2008; 5:1488–93.
34. Aazami, M. A., Torabi, M. & Jalili, E. In vitro
response of promising tomato genotypes for tolerance
to osmotic stress. Afr. J. Biotechnol. 2010;
9(26):4014-17.
35. Keyvan, S. The effects of drought stress on yield,
relative water content, proline, soluble carbohydrates
and chlorophyll of bread wheat cultivars. Journal of
Animal & Plant Sciences. 2010; 8(3):1051-60.
36. Burg, M B., Kwon, E D., & Kultz, D. Osmotic
regulation of gene expression. FASEB J. 1996;
10:1598–1606.
37. Chen, T H H, Murata N. Enhancement of tolerance of
abiotic stress by metabolic engineering of betaines
and other compatible solutes. Curr. Opin. Plant Biol.
2002; 5: 250–7.
38. Liu, T. & Van Staden, J. Partitioning of carbohydrates
in salt-sensitive and salt-tolerant soybean callus
cultures under salinity stress and its subsequent relief.
Plant Growth Regulation. 2001; 33:13-7.
39. Britton, G. TLC of carotenoids. In: Waksmundzka-
Hajnos, M., Sherma, J. & Kowalska, T. Eds. Thin
Layer Chromatography in Phytochemistry.CRC Press,
New York. 2008; 543-73.
40. Choksi, PM. & Joshi VY. A review on Lycopene -
Extraction, purification, stability and applications.
International Journal of Food Properties. 2007;
10:289-98.
41. Kumar, M., Mondal, D B. & DAN, A. Quantification
of Catechin and Lycopene in Calendula officinalis
Extracts using HPTLC methods. Asian Journal of
Pharmaceutical and Clinical Research. 2011; 4(2).
42. Banu, M N., Hoque, M A., Watanabe-Sugimoto, M.,
Matsuoka, K., Nakamura, Y., Begum, M. K., Islam,
M. O., Miah, M. A. S., Hossain, M. A. & Islam, N.
Production of Somaclone In vitro for Drought Stress
Tolerant Plantlet Selection in Sugarcane (Saccharum
officinarum L.). Agriculturists. 2011; 9(1&2):18–28.
43. Thippe swamy, M., Chandraobul reddy, P., Sinilal, B.,
Shiva, K. M. & Sudhakar, C. Proline accumulation
and the Expression of 1-Pyrroline-5-Carboxylate
Synthetase in two Safflower Cultivars. Biology of
Plant. 2010; 54:386-90.
44. Ozden, M., Demirel, U. & Kahraman, A. Effects of
Proline on Antioxidant System in Leaves of
Grapevine (Vitis vinifera L.) Exposed to Oxidative
Stress by H2O2. Scientia. Horticulturae. 2009;
119:163-8.
45. León, P. & Sheen, J. Sugar and hormone connections.
2003; 8(3):110-16.
46. Hasegawa, P M., Bressan, R., Zhu, J K, Bohnert, H J.
Plant cellular and molecular responses to high salinity.
Annu. Rev.Plant Physiol. Plant Mol. Biol. 2000;
51:463-99.
47. Serraj, R., Sinclair, T R. Osmolyte accumulation: Can
it really help increase in crop yield under drought
conditions? Plant Cell Environ. 2002; 25:333-41.
48. Ohto, M. et al. Effects of sugar on vegetative
development and floral transition in Arabidopsis.
Plant Physiol. 2001; 127:252–61.
49. Depascale, S., Maggio, A., Angelino, G., Graziani, G.,
Trisaia, C R. & Jonicakm, S S. Effect of salt stress on
water relations and antioxidant activity in tomato.
Acta. Hort. 2003; 613:39-46.
50. Cuin, TA. & Shabala, S. Amino acids regulate salinity
induced potassium efflux in barley root epidermis.
Planta. 2007; 225:753-61.
51. Pan, Y., Wu, LJ. & Yu, LZ. Effect of salt and
droughtstress on antioxidant enzymes activities and
SOD isoenzymes of liquorice (Glycyrrhiza uralensis
Fisch). Plant Growth Regulation. 2006; 49: 159-65.
52. Alia, A., Saradhi, P. & Mohanty, P. Proline Enhances
Primary Photochemical Activities in Isolated
Thylakoid Membranes of Brassica juncea by
Arresting Photo-Inhibitory Damage. Biochemical and
Biophysical Research Communications. 1991;
181:1238.
53. Stewart, G R. & Lee, J A. The Role of Proline
Accumulation in Halophytes. Planta. 1974; 120:279-
89.
54. Wahid, A., Fazal, H. & Amin Ullah, J. In vitro
assessment of tomato (Lycopersicon esculentum) and
Cauliflower (Brassica oleracea) seedlings growth and
proline production under salt stress, International
Journal of Biosciences. 2014; 4(9):109-15.
55. Saruhan, N., Terzi, R. & Kadioglu, A. The effects of
exogenous polyamines on some biochemical changes
during drought stress I Ctenanthesetosa. Acta.
Biologica. Hungarica. 2006; 57 (2):221-9.
56. Kishor, PBK., Sangama, S., Amrutha, RN., Laxmi,
PS., Naidu, KR. & Rao, KS. Regulation of proline
biosynthesis degradation, uptake and transport in
higher plants: its implications in plant growth and
abiotic stress tolerance. Current science. 2005;
88(3):424-38.
57. Gill, S. S. & Tuteja, N. Reactive oxygen species and
antioxidant machinery in abiotic stress tolerance in
crop plants. Plant Physiol. Biochem. 2010; 48:909-30.
58. Sharma, P., Jha, A B., Dubey, R S. & Pessarakli, M.
Reactive oxygen species, oxidative damage and
antioxidant defense mechanism in plants under
stressful conditions. A review J. Bot. 2012; 1–26.
59. Sharma, S S. & Dietz, K J. The relationship between
metal toxicity and cellular redox imbalance. Trends
Plant Sci. 2009; 14:43–50.
60. Anastasia, E., GiannakouI, A. & Ilias, J. The effect of
water stress and salinity on growth and physiology of
(Lycopersicon esculentum Mill.). Arch. Biol. Sci.,
Belgrade. 2013; 65(2):611-20.
61. Patade, V Y., Bhargava, S. & Suprasanna, P. Effects of
NaCl and isoosmotic PEG stress on growth,
Osmolytes accumulation and antioxidant defense in
cultured sugarcane cells. Plant Cell Tissue Organ Cult.
2012; 108:279–86.
62. Musa, Y. The use of Polyethylene glycol (PEG) as
selection agent of callus and plantlets of some
sugarcane varieties for drought tolerance. J. Agrivigor.
2011; 10(2):130–40.
63. Kranner, I., Beckett, RP., Wornik, S., Zorn, M. &
Pfeifhofer, HW. Revival of a resurrection plant
correlates with its antioxidant status. Plant. J. 2002;
31:13-20.
64. Khashan, KT. Comparative Study Between Callus,
Regenerated shoots and Tap roots with Respect to
Production of β-carotene, Carbohydrate and vitamin C
in vivo and in vitro From Carrot (Daucus carota L.);
2015.
65. Engelmann, N J., Rogers, R B., Lila, M A. & Erdman,
J W. Jr. Herbicide treatments alter carotenoid profiles
for 14C tracer production from tomato (Solanum
lycopersicum cv. VFNT cherry) cell cultures. J. Agric.
Food Chem.2009; 57:4614–19.
66. Bourgaud, F., Gravot, A., Milesi, S. & Gontier, E.
Production of plant secondary metabolites: A
historical perspective. Plant Sci. 2001; 161:839–51.
67. Yokoi, S., Quintero, F J., Cubero, B., Ruiz, M T.,
Bressan, R A., Hasegawa, P. M. & Pardo, J M.
Differential expression and function of Arabidopsis
thaliana NHX Na+/H+ anti porters in the salt stress
response. Plant J. 2002; 30:529–39.
68. Mizanur, M., Mohammad, M., Rahman, K. &
Mohammad, M. Analysis of Vitamin C (ascorbic acid)
Contents in Various Fruits and Vegetables by UVspectrophotometry,
Bangladesh J. Sci. Ind. Res. 2007;
42(4):417-24.
69. Al-Hattab, Z N., Al-Kateeb, E., Al-Quady, W K. &
Mahdi, G. Effect of growth hormones on tropane
alkaloids production in Datura metelcallus cultures.
College of pharmacy, University of Baghdad. IBN Al-
Hathamj. 2000; 13(1):30-41.
70. Khalil, IA. & Varananis, F R. Carotiniod extraction
and analysis by reversed phase HPLC system. Sarhad.
J. Agric. 1996; 105(67):15-21.
Statistics
1994 Views | 2065 Downloads
How to Cite
Kareem, T., and A. Karrar. “BIOCHEMICAL AND PHYSIOLOGICAL CHANGES OF CALLUS GROWTH AND LYCOPENE PIGMENT PRODUCTION FROM TOMATO (Lycopersicon Esculentum Mill.) UNDER DROUGHT STRESS”. Himalayan Journal of Health Sciences, Vol. 3, no. 1, Apr. 2018, pp. 7-21, doi:10.22270/ijist.v3i1.9.
Section
Original Articles