A Review on Flavonoid Luteolin: Phytochemistry, Pharmacognosy and Pharmacological activities

  • Lanan Wassy SOROMOU University of Labe

Abstract

Background:


Natural products are secondary metabolites produced and used by organisms for defending or adapting purposes. Historically, plants and their components have been widely used since ancient times for the treatment of various ailments. 


Objectives:


This paper uses recent research findings with a broad range of study models to comprehensively summarize the phytochemistry, pharmacognosy and pharmacological activities of Luteolin (LTL) reported to date. 


Methodology:


Articles published in scientific journals by authors on LTL were analyzed for the study.


Results: 


LTL has been known to play a wide range of pharmacological functions such as anticancer, anti-inflammatory, antioxidant, antiviral, hepato and neuroprotective properties.


Conclusion:


LTL plays several pharmacological processes. Although scientists have strongly reported the important functions of LTL, we conclude by emphasizing the further use of laboratory experiments to extend its application scope.

Keywords: Luteolin, Phytochemistry, Pharmacognosy, Pharmacology

References

1. Shi QW, Li LG, Huo CH., Zhang ML, Wang YF. Study on natural medicinal chemistry and new drug development. Chin. Tradit. Herb. Drugs. 2010; 41:1583–1589.
2. Yuan H, Ma Q, Ye L, Piao G. The Traditional Medicine and Modern Medicine from Natural Products. Molecules. 2016; 21(5): 559.
doi: 10.3390/molecules21050559.
3. Kumar S, Gupta P, Sharma S and Kumar D. A review on immunostimulatory plants. J. Chinese Integrat. Med. 2011; 9:117-128.
4. Tapsell LC, Hemphill I, Cobiac L, Patch CS, Sullivan DR, Fenech M, et al. Health benefits of herbs and spices: the past, the present, the future. Medical Journal of Australia, 2006; 185 (4), S1-S24.
5. Fang J, Wu Z, Cai C, Wang Q,Tang Y, Cheng F. Quantitative and Systems Pharmacology. 1. In Silico Prediction of Drug-Target Interaction of Natural Products Enables New Targeted Cancer Therapy. J Chem Inf Model. 2017;57(11):2657–2671.
doi: 10.1021/acs.jcim.7b00216
6. Soejarto DD.Farnsworth NR. Tropical Rain Forests: Potential Source of New Drugs? Perspect. Biol. Med. 1989; 32:244–256.
7. Srivastava PK, A. K. Pandey Natural products and derivatives: biological and pharmacological activities. Biochem. Cell. Arch.2015;15(1):1-38.
8. Kinghorn AD, Pan L, Fletcher JN, Chai, H. The relevance of higher plants in lead compound discovery programs. J. Nat. Prod. 2011; 74:1539–1555.
9. Ginwala R, Bhavsar R, Chigbu DI, Jain P, Khan ZK. Potential Role of Flavonoids in Treating Chronic Inflammatory Diseases with a Special Focus on the Anti-Inflammatory Activity of Apigenin. Antioxidants (Basel). 2019; 8(2). pii: E35.
doi: 10.3390/antiox8020035.
10. Ross JA, Kasum CM. Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu. Rev. Nutr. 2002; 22:19–34.
11. Abidin L, Mujeeb M, Mir SR, Khan SA, Ahmad A.Comparative assessment of extraction methods and quantitative estimation of luteolin in the leaves of Vitex negundo Linn. by HPLC. Asian Pac J Trop Med. 2014; 7S1:S289-93.
doi: 10.1016/S1995-7645(14)60248-0.
12. Rooban BN, Sasikala V, Gayathri Devi V, Sahasranamam V, Abraham A. Prevention of selenite induced oxidative stress and cataractogenesis by luteolin isolated from Vitex negundo. Chem Biol Interact 2012; 196: 30-38.
13. Chan TS, Galati G, Pannala AS, Rice-Evans C, O'Brien PJ. Simultaneous detection of the antioxidant and pro-oxidant activity of dietary polyphenolics in a peroxidase system. Free Radic. Res. 2003; 37:787–794.
14. Shimoi K, Okada H, Furugori M, Goda T, Takase S, Suzuki M, Hara Y, Yamamoto H, Kinae N. Intestinal absorption of luteolin and luteolin 7-O-beta-glucoside in rats and humans. FEBS Lett. 1998; 438:220–224.
15. Hempel J, Pforte H, Raab B, Engst W, Bohm H, Jacobasch G. Flavonols and flavones of parsley cell suspension culture change the antioxidative capacity of plasma in rats. Nahrung. 1999; 43:201–204.
16. Le Marchand L. Cancer preventive effects of flavonoids--a review. Biomed. Pharmacother. 2002; 56:296–301.
17. Anandjiwala S, Kalola J, Rajani M. Quantification of eugenol, luteolin, ursolic acid, and oleanolic acid in black (Krishna Tulasi) and green (Sri Tulasi) varieties of Ocimum sanctum Linn. using high-performance thin-layer chromatography. J AOAC Int. 2006; 89(6):1467-74.
18. Li N, Qiu J, Liu H, Chen Z, Qian Y. Thermoregulated extraction of luteolin under neutral conditions using oligo(ethylene glycol)-based magnetic nanoparticles with Wulff-type boronate affinity. J Chromatogr A. 2019; 1607:460396.
doi: 10.1016/j.chroma.2019.460396.
19. Mecocci P, Tinarelli C, Schulz RJ, Polidori MC. Nutraceuticals in cognitive impairment and Alzheimer's disease. Front. Pharmacol. 2014, 5:147. 10.3389/ fphar.2014.00147.
20. Vertuani S, Angusti A, Manfredini S. Theantioxidants and pro-antioxidant network: an overview. Curr. Pharm. Des. 2004; 10(14):77–94.
21. Chonpathompikunlert P, Boonruamkaew P, Sukketsiri W, Hutamekalin, Morakot Sroyraya P. The Antioxidant and Neurochemical Activity of Apium Graveolens L. and its Ameliorative Effect on MPTP-induced Parkinson-like Symptoms in Mice. BMC Complement Altern Med. 2018;18(1):103.
doi: 10.1186/s12906-018-2166-0.
22. Sowbhagya HB. Chemistry, technology, and nutraceutical functions of celery (Apium graveolens L.): an overview. Crit Rev Food Sci Nutr. 2014;54(3):389-98. doi: 10.1080/10408398.2011.586740.
23. Grube K, Spiegler V, Hensel A.J Antiadhesive phthalides from Apium graveolens fruits against uropathogenic E. coli. Ethnopharmacol. 2019; 237:300-306.
doi: 10.1016/j.jep.2019.03.024.
24. Boonruamkaew P, Sukketsiri W, Panichayupakaranant P, Kaewnam W, Tanasawet S, Tipmanee V, Hutamekalin P, Chonpathompikunlert P. Apium graveolens extract influences mood and cognition in healthy mice. .J Nat Med. 2017; 71(3):492-505.
doi: 10.1007/s11418-017-1077-6.
25. Kumar S, Mishra M, Wahab N, Warikoo R. Larvicidal, repellent, and irritant potential of the seed-derived essential oil of Apium graveolens against dengue vector Aedes aegypti L. (Diptera Culicidae) Front Public Health. 2014; 2:147.
26. Choochote W, Tuetun B, Kanjanapothi D, Rattanachanpichai E, Chaithong U, Chaiwong P, et al. Potential of crude seed extract of celery Apium graveolens L. against the mosquito Aedes aegypti (L.) (Diptera Culicidae). J Vector Ecol. 2004; 29:340–6.
27. Tuetun B, Choochote W, Kanjanapothi D, Rattanachanpichai E, Chaithong U, Chaiwong P, et al. Repellent properties of celery Apium graveolens L. compared with commercial repellents, against mosquitoes under laboratory and field conditions. Trop Med Int Health. 2005; 10:1190–8.
28. Ahmed B, Alam T, Varshney M, Khan SA. Hepatoprotective activity of two plants belonging to the Apiaceae and the Euphorbiaceae family. J Ethnopharmacol. 2002;79:313–6.
29. Zidorn C, Jöhrer K, Ganzera M, Schubert B, Sigmund EM, Mader J, et al. Polyacetylenes from the Apiaceae vegetables carrot, celery, fennel, parsley, and parsnip and their cytotoxic activities. J Agric Food Chem. 2005; 53:2518–23.
30. Roghani M, Baluchnejadmojarad T, Amin A, Amirtouri R. The effect of administration of Apium graveolens aqueous extract on the serum levels of glucose and lipids of diabetic rats. Iran J Endocrinol Metab. 2007;9:177–81.
31. Mencherini T, Cau A, Bianco G, Loggia RD, Aquino R. An extract of Apium graveolens var. dulce leaves: Structure of the major constituent, apiin, and its anti-inflammatory properties. J Pharm Pharmacol. 2007;59:891–7.
32. Lewis DA, Tharib SM, Veitch GB. The anti-inflammatory activity of celery Apium graveolens L.(Fam. Umbelliferae) Int J Crude Drug Res. 1985;23:27–32.
33. [33] Naema NF, Dawood B, Hassan S. A study of some Iraqi medicinal plants for their spasmolytic and;antibacterial activities. J Basrah Res (Sci) 2010;36:67–8.
34. Atta AH, Alkofahi A. Anti-nociceptive and anti-inflammatory effects of some Jordanian medicinal plant extracts. J Ethnopharmacol. 1998;60:117–24.
35. Jakovljevic V, Raskovic A, Popovic M, Sabo J. The effect of celery and parsley juices on pharmacodynamic activity of drugs involving cytochrome P450 in their metabolism. Eur J Drug Metab Pharmacokinet. 2002;27:153–6.
36. Al-Howiriny T, Alsheikh A, Alqasoumi S, Al-Yahya M, ElTahir K, Rafatullah S. Gastric antiulcer, antisecretory and cytoprotective properties of celery (Apium graveolens) in rats. Pharm Biol. 2010;48:786–93.
37. Rokayya S, Li CJ, Zhao Y, Li Y, Sun CH.Cabbage (Brassica oleracea L. var. capitata) phytochemicals with antioxidant and anti-inflammatory potential. Asian Pac J Cancer Prev. 2014;14(11):6657-62.
doi: 10.7314/apjcp.2013.14.11.6657.
38. Smiechowska A, Bartoszek A, Namieśnik J.[Cancer chemopreventive agents: glucosinolates and their decomposition products in white cabbage (Brassica oleracea var. capitata)].Postepy Hig Med Dosw (Online). 2008;62:125-40.
39. Meghwal M, Goswami TK Piper nigrum and piperine: an update.Phytother Res. 2013;27(8):1121-30.
doi: 10.1002/ptr.4972.
40. Takooree H, Aumeeruddy MZ, Rengasamy KRR, Venugopala KN, Jeewon R, Zengin G, Mahomoodally MF. A Systematic Review on Black Pepper (Piper nigrum L.): From Folk Uses to Pharmacological Applications. Crit Rev Food Sci Nutr. 2019;59(sup1):S210-S243.
doi: 10.1080/10408398.2019.1565489.
41. Pierce A. American Pharmaceutical Association Practical Guide to Natural Medicines. New York: Stonesong Press.1999;338–340.
42. Marefati N, Eftekhar N, Kaveh M, Boskabadi J, Beheshti F, Boskabady MH. The Effect of Allium cepa Extract on Lung Oxidant, Antioxidant, and Immunological Biomarkers in Ovalbumin-Sensitized Rats. Med Princ Pract. 2018;27(2):122-128.
doi: 10.1159/000487885.
43. El-Aasr M, Fujiwara Y, Takeya M, Ikeda T, Tsukamoto S, Ono M, Nakano D, Okawa M, Kinjo J, Yoshimitsu H, Nohara T. Onionin A from Allium cepa inhibits macrophage activation..J Nat Prod. 2010;73(7):1306-8. doi: 10.1021/np100105u.
44. Sodimbaku V, Pujari L, Mullangi R, Marri S. Carrot (Daucus carota L.): Nephroprotective against gentamicin-induced nephrotoxicity in rats. Indian J Pharmacol. 2016;48(2):122-7.
doi: 10.4103/0253-7613.178822.
45. Shebaby WN, Daher CF, El-Sibai M, Bodman-Smith K, Mansour A, Karam MC, Mroueh M. Antioxidant and hepatoprotective activities of the oil fractions from wild carrot (Daucus carota ssp. carota). Pharm Biol. 2015;53(9):1285-94.
doi: 10.3109/13880209.2014.976349.
46. El-Houri RB, Kotowska D, Christensen KB, Bhattacharya S, Oksbjerg N, Wolber G, Kristiansen K, Christensen LP. Polyacetylenes from carrots (Daucus carota) improve glucose uptake in vitro in adipocytes and myotubes. Food Funct. 2015;6(7):2135-44.
doi: 10.1039/c5fo00223k.
47. Tavares AC, Gonçalves MJ, Cavaleiro C, Cruz MT, Lopes MC, Canhoto J, Salgueiro LR.Essential oil of Daucus carota subsp. halophilus: composition, antifungal activity and cytotoxicity. J Ethnopharmacol. 2008; 119(1):129-34.
doi: 10.1016/j.jep.2008.06.012.
48. Dong M, Yu D, Duraipandiyan V, Abdullah Al-Dhabi N.The Protective Effect of Chrysanthemum indicum Extract against Ankylosing Spondylitis in Mouse Models".Biomed Res Int. 2018;2018:8097342. doi:10.1155/2018/8097342.
49. Cha JY, Nepali S, Lee HY, Hwang SW, Choi SY, Yeon JM, Song BJ, Kim DK, Lee YM. Chrysanthemum indicum L. ethanol extract reduces high-fat diet-induced obesity in mice. Exp Ther Med. 2018; 15(6):5070-5076. doi: 10.3892/etm.2018.6042.
50. Yu SH, Sun X, Kim MK, Akther M, Han JH, Kim TY, Jiang J, Kang TB, Lee KH Chrysanthemum indicum extract inhibits NLRP3 and AIM2 inflammasome activation via regulating ASC phosphorylation..J Ethnopharmacol. 2019; 239:111917.
doi: 10.1016/j.jep.2019.111917.
51. Nepali S, Cha JY, Ki HH, Lee HY, Kim YH, Kim DK, Song BJ, Lee YM. Chrysanthemum indicum Inhibits Adipogenesis and Activates the AMPK Pathway in High-Fat-Diet-Induced Obese Mice. Am J Chin Med. 2018;46(1):119-136.
doi: 10.1142/S0192415X18500076.
52. Choi KT, Kim JH, Cho HT, Lim SS, Kwak SS, Kim YJ. Dermatologic evaluation of cosmetic formulations containing Chrysanthemum indicum extract.J Cosmet Dermatol. 2016;15(2):162-8.
doi: 10.1111/jocd.12211.
53. Mariadoss AVA, Ramachandran V, Shalini V, Agilan B, Franklin JH, Sanjay K, et al. Green synthesis, characterization and antibacterial activity of silver nanoparticles by Malus domestica and its cytotoxic effect on (MCF-7) cell line. Microb Pathog. 2019;135:103609. doi: 10.1016/j.micpath.2019.103609.
54. Pires TCSP, Dias MI, Barros L, Alves MJ, Oliveira MBPP, Santos-Buelga C, et al. .Antioxidant and antimicrobial properties of dried Portuguese apple variety (Malus domestica Borkh. cv Bravo de Esmolfe). Food Chem. 2018;240:701-706.
doi: 10.1016/j.foodchem.2017.08.010.
55. Hamauzu Y, Yasui H, Inno T, Kume C, Omanyuda M. Phenolic profile, antioxidant property, and anti-influenza viral activity of Chinese quince (Pseudocydonia sinensis Schneid.), quince (Cydonia oblonga Mill.), and apple (Malus domestica Mill.) fruits. J Agric Food Chem. 2005;53(4):928-34.
doi: 10.1021/jf0494635.
56. Pasko P, Bukowska-Strakova K, Gdula-Argasinska J, Tyszka-Czochara M. Rutabaga (Brassica napus L. var. napobrassica) seeds, roots, and sprouts: a novel kind of food with antioxidant properties and proapoptotic potential in Hep G2 hepatoma cell line. J Med Food. 2013;16(8):749-59.
doi: 10.1089/jmf.2012.0250.
57. Ben Salem M, Ben Abdallah Kolsi R, Dhouibi R, Ksouda K, Charfi S, Yaich M, et al. Protective effects of Cynara scolymus leaves extract on metabolic disorders and oxidative stress in alloxan-diabetic rats. BMC Complement Altern Med. 2017; 17(1):328.
doi: 10.1186/s12906-017-1835-8.
58. Salekzamani S, Ebrahimi-Mameghani M, Rezazadeh K The antioxidant activity of artichoke (Cynara scolymus): A systematic review and meta-analysis of animal studies..Phytother Res. 2019 Jan; 33(1):55-71.
doi: 10.1002/ptr.6213.
59. Ben Salem M, Ksouda K, Dhouibi R, Charfi S, Turki M, Hammami S, et al. LC-MS/MS Analysis and Hepatoprotective Activity of Artichoke (Cynara scolymus L.) Leaves Extract against High Fat Diet-Induced Obesity in Rats. Biomed Res Int. 2019;2019:4851279.
doi: 10.1155/2019/4851279.
60. Ahmadi A, Heidarian E, Ghatreh-Samani K. Modulatory effects of artichoke (Cynara scolymus L.) leaf extract against oxidative stress and hepatic TNF-α gene expression in acute diazinon-induced liver injury in rats. J Basic Clin Physiol Pharmacol. 2019;30(5):/j/ jbcpp.2019.30.issue-5/jbcpp-2018-0180/jbcpp-2018-0180.xml.
doi: 10.1515/jbcpp-2018-0180.
61. Li M, Zhang Y, Ding W, Luo J, Li S, Zhang Q. Effect of acaricidal components isolated from lettuce (Lactuca sativa) on carmine spider mite (Tetranychus cinnabarinus Boisd.). Bull Entomol Res. 2018;108(3):314-320.
doi: 10.1017/S0007485317000748.
62. Złotek U, Świeca M.Elicitation effect of Saccharomyces cerevisiae yeast extract on main health-promoting compounds and antioxidant and anti-inflammatory potential of butter lettuce (Lactuca sativa L.). J Sci Food Agric. 2016; 96(7):2565-72.
doi: 10.1002/jsfa.7377.
63. Papetti A, Daglia M, Gazzani G. Anti- and pro-oxidant water soluble activity of Cichorium genus vegetables and effect of thermal treatment. J Agric Food Chem. 2002; 50(16):4696-704.
doi: 10.1021/jf020123y.
64. Mares D, Romagnoli C, Tosi B, Andreotti E, Chillemi G, Poli F. Chicory extracts from Cichorium intybus L. as potential antifungals. Mycopathologia. 2005; 160(1):85-91.
doi: 10.1007/s11046-004-6635-2.
65. Nishimura M, Ohkawara T, Sato H, Takeda H, Nishihira J. Pumpkin Seed Oil Extracted From Cucurbita maxima Improves Urinary Disorder in Human Overactive Bladder. J Tradit Complement Med. 2014; 4(1):72-4.
doi: 10.4103/2225-4110.124355.
66. Mahmoodpoor A, Medghalchi M, Nazemiyeh H, Asgharian P, Shadvar K, Hamishehkar H. Effect of Cucurbita Maxima on Control of Blood Glucose in Diabetic Critically Ill Patients. Adv Pharm Bull. 2018 Jun; 8(2):347-351.
doi: 10.15171/apb.2018.040. Epub 2018 Jun 19.
67. Kalaivani A, Sathibabu Uddandrao VV, Brahmanaidu P, Saravanan G, Nivedha PR, Tamilmani P, et al..Anti obese potential of Cucurbita maxima seeds oil: effect on lipid profile and histoarchitecture in high fat diet induced obese rats.Nat Prod Res. 2018 Dec; 32(24):2950-2953.
doi: 10.1080/14786419.2017.1389939. Epub 2017 Oct 19.
68. Srinivasan K. Biological Activities of Red Pepper (Capsicum annuum) and Its Pungent Principle Capsaicin: A Review. Crit Rev Food Sci Nutr. 2016; 56(9):1488-500. doi: 10.1080/10408398.2013.772090.
69. Alvarez-Parrilla E, de la Rosa LA, Amarowicz R, Shahidi F. Antioxidant activity of fresh and processed Jalapeño and Serrano peppers..J Agric Food Chem. 2011; 59(1):163-73.
doi: 10.1021/jf103434u.
70. Lin W, Liu C, Yang H, Wang W, Ling W, Wang D. Chicory, a typical vegetable in Mediterranean diet, exerts a therapeutic role in established atherosclerosis in apolipoprotein E-deficient mice. Mol Nutr Food Res. 2015; 59(9):1803-13. doi: 10.1002/mnfr.201400925.
71. Artis, D.; Spits, H. The biology of innate lymphoid cells. Nature 2015, 517, 293–301.
72. Pedraza-Alva, G.; Pérez-Martínez, L.; Valdez-Hernández, L.; Meza-Sosa, K.F.; Ando-Kuri, M. Negative regulation of the inflammasome: Keeping inflammation under control. Immunol. Rev. 2015; 265:231–257.
73. Fernandes, J.V.; Cobucci, R.N.; Jatobá, C.A.; Fernandes, T.A.; de Azevedo, J.W.; de Araújo, J.M. The role of the mediators of inflammation in cancer development. Pathol. Oncol. Res. 2015; 21:527–534.
74. Heppner, F.L.; Ransohoff, R.M.; Becher, B. Immune attack: The role of inflammation in Alzheimer disease. Nat. Rev. Neurosci. 2015, 16, 358–372
75. Chen X, Lai Y, Song X, Wu J, Wang L, Zhang H, et al. Polysaccharides From Citrus Grandis Associate With Luteolin Relieves Chronic Pharyngitis by Anti-Inflammatory via Suppressing NF-κB Pathway and the Polarization of M1 Macrophages. 2018; 32:2058738418780593.
doi: 10.1177/2058738418780593.
76. Funaro A, Wu X, Song M, Zheng J, Guo S, Rakariyatham K, Rodriguez-Estrada MT, Xiao H. Enhanced Anti-Inflammatory Activities by the Combination of Luteolin and Tangeretin. Journal of Food Science, 2016, 81(5):H1320-7
doi: 10.1111/1750-3841.13300 PMID: 27095513
77. He L, Gu J, Lim LY, Yuan ZX, Mo J. Nanomedicine-mediated therapies to target breast cancer stem cells.Front Pharmacol. 2016;7: 313.
78. Qin W, Huang G, Chen Z, Zhang Y. Nanomaterials in targeting cancer stem cells for cancer therapy. Front Pharmacol. 2017;8:1.
79. Zhang LQ, Lv RW, Qu XD, Chen XJ, Lu HS, Wang Y. Aloesin suppresses cell growth and metastasis in ovarian cancer SKOV3 cells through the inhibition of the MAPK signaling pathway. Anal Cell Pathol. 2017;2017: 1-6.
80. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin2016;66(1):7-30.
81. Imran M, Rauf A, Abu-Izneid T, Nadeem M, Shariati MA, Khan IA, et al. Luteolin, a flavonoid, as an anticancer agent: A review".Biomed. Pharmacother. 2019, 112 108612].
doi: 10.1016/j.biopha.2019.109084.
82. Lin Y, Shi R, Wang X, Shen HM.Luteolin, a flavonoid with potential for cancer prevention and therapy. Curr Cancer Drug Targets. 2008;8(7):634-46.
doi: 10.2174/156800908786241050.
83. Lee J, Park SH, Lee J, Chun H, Choi MK, Yoon JH, et al. Differential effects of luteolin and its glycosides on invasion and apoptosis in MDA-MB-231 triple-negative breast cancer cells. EXCLI J. 2019;18:750-763.
doi: 10.17179/excli2019-1459.
84. Seo Y, Ryu K, Park J, Jeon DK, Jo S, Lee HK, et al. Inhibition of ANO1 by luteolin and its cytotoxicity in human prostate cancer PC-3 cells. PLoS One. 2017 Mar 31; 12(3):e0174935.
doi: 10.1371/journal.pone.0174935.
85. Yao Y, Rao C, Zheng G, Wang S. Luteolin suppresses colorectal cancer cell metastasis via regulation of the miR 384/pleiotrophin axis. Oncol Rep. 2019; 42(1):131-141. doi: 10.3892/or.2019.7136.
86. Lee Y, Kwon YH.Regulation of apoptosis and autophagy by luteolin in human hepatocellular cancer Hep3B cells. Biochem Biophys Res Commun. 2019; 517(4):617-622. doi: 10.1016/j.bbrc.2019.07.073.
87. Yao X , Jiang W , Yu D , Yan Z. Luteolin inhibits proliferation and induces apoptosis of human melanoma cells in vivo and in vitro by suppressing MMP-2 and MMP-9 through the PI3K/AKT pathway..Food Funct. 2019; 10(2):703-712.
doi: 10.1039/c8fo02013b
88. Kang KA, Piao MJ, Hyun YJ, Zhen AX, Cho SJ, Ahn MJ, et al. Luteolin promotes apoptotic cell death via upregulation of Nrf2 expression by DNA demethylase and the interaction of Nrf2 with p53 in human colon cancer cells. Exp Mol Med. 2019; 51(4):1-14. doi: 10.1038/s12276-019-0238-y.
89. Yang PW, Lu ZY, Pan Q, Chen TT, Feng XJ, Wang SM, et al. MicroRNA-6809-5p mediates luteolin-induced anticancer effects against hepatoma by targeting flotillin1. Phytomedicine 2019;57:18-29.doi:10.1016/j.phymed. 2018.10.027.
90. Ahmed S, Khan H, Fratantonio D, Hasan MM, Sharifi S, Fathi N,et al. Apoptosis induced by luteolin in breast cancer: Mechanistic and therapeutic perspectives. Phytomedicine. 2019;59:152883.
doi: 10.1016/j.phymed. 2019.152883.
91. Pu Y, Zhang T, Wang J, Mao Z, Duan B, Long Y, et al. Luteolin exerts an anticancer effect on gastric cancer cells through multiple signaling pathways and regulating miRNAs. J Cancer. 2018;9(20):3669-3675.
doi: 10.7150/jca.27183.
92. Iida K, Naiki T, Naiki-Ito A, Suzuki S, Kato H, Nozaki S, et al. Luteolin suppresses bladder cancer growth via regulation of mechanistic target of rapamycin pathway. Cancer Sci. 2020;111(4):1165-1179.
doi: 10.1111/cas.14334.
93. Lim W, Yang C, Bazer FW, Song G. Luteolin Inhibits Proliferation and Induces Apoptosis of Human Placental Choriocarcinoma Cells by Blocking the PI3K/AKT Pathway and Regulating Sterol Regulatory Element Binding Protein Activity. Biol Reprod. 2016; 95(4):82. doi: 10.1095/biolreprod.116.141556.
94. Cook MT, Mafuvadze B, Besch-Williford C, Ellersieck MR, Goyette S, Hyder SM. Luteolin suppresses development of medroxyprogesterone acetate-accelerated 7,12-dimethylbenz(a)anthracene-induced mammary tumors in Sprague-Dawley rats. Oncol Rep. 2016; 35(2):825-32.
doi: 10.3892/or.2015.4431.
95. Cao Z, Zhang H, Cai X, Fang W, Chai D, Wen Y, et al. .Luteolin Promotes Cell Apoptosis by Inducing Autophagy in Hepatocellular Carcinoma. Cell Physiol Biochem. 2017; 43(5):1803-1812.
doi: 10.1159/000484066.
96. Chen PY, Tien HJ, Chen SF, Horng CT, Tang HL, Jung HL, et al. Response of myeloid leukemia cells to Luteolin is modulated by differentially expressed pituitary tumor-transforming gene 1 (PTTG1) Oncoprotein. Int J Mol Sci. 2018; 19(4):1173.
doi: 10.3390/ijms19041173.
97. Ju W, Wang X, Shi H, Chen W, Belinsky SA, Lin Y. A critical role of luteolin-induced reactive oxygen species in blockage of tumor necrosis factor-activated nuclear factor-kappaB pathway and sensitization of apoptosis in lung cancer cells. Mol Pharmacol. 2007; 71(5):1381-8. doi: 10.1124/mol.106.032185.
98. El Gueder D, Maatouk M, Kalboussi Z, Daouefi Z, Chaaban H, Ioannou I, et al. Heat processing effect of luteolin on anti-metastasis activity of human glioblastoma cells U87. Environ Sci Pollut Res Int. 2018; 25(36):36545-36554.
doi: 10.1007/s11356-018-3477-x.
99. Wang Q, Wang H, Jia Y, Ding H, Zhang L, Pan H. Luteolin reduces migration of human glioblastoma cell lines via inhibition of the p-IGF-1R/PI3K/AKT/mTOR signaling pathway. Oncol Lett. 2017; 14(3):3545-3551. doi: 10.3892/ol.2017.6643.
100. Huang L, Jin K, Lan H. Luteolin inhibits cell cycle progression and induces apoptosis of breast cancer cells through downregulation of human telomerase reverse transcriptase. Oncol Lett. 2019r; 17(4):3842-3850.
doi: 10.3892/ol.2019.10052.
101. Ma L, Peng H, Li K, Zhao R, Li L, Yu Y, et al. Luteolin exerts an anticancer effect on NCI-H460 human non-small cell lung cancer cells through the induction of Sirt1-mediated apoptosis. Mol Med Rep. 2015; 12(3):4196-4202.
doi: 10.3892/mmr.2015.3956.
102. Li L, Luo W, Qian Y, Zhu W, Qian J, Li J, et al. Luteolin protects against diabetic cardiomyopathy by inhibiting NF-κB-mediated inflammation and activating the Nrf2-mediated antioxidant responses. Phytomedicine. 2019; 59:152774.
doi: 10.1016/j.phymed.2018.11.034.
103. Xiao C, Xia ML, Wang J, Zhou XR, Lou YY, Tang LH, et al. Luteolin Attenuates Cardiac Ischemia/Reperfusion Injury in Diabetic Rats by Modulating Nrf2 Antioxidative Function. Oxid Med Cell Longev. 2019; 2019:2719252. doi: 10.1155/2019/2719252.
104. Ahmadi SM, Farhoosh R, Sharif A, Rezaie M. Structure-Antioxidant Activity Relationships of Luteolin and Catechin. J Food Sci. 2020; 85(2):298-305.
doi: 10.1111/1750-3841.14994.
105. Gelabert-Rebato M, Wiebe JC, Martin-Rincon M, Galvan-Alvarez V, Curtelin D, Perez-Valera M, et al. Enhancement of Exercise Performance by 48 Hours, and 15-Day Supplementation with Mangiferin and Luteolin in Men. Nutrients. 2019; 11(2):344.
doi: 10.3390/nu11020344.
106. Ou HC, Pandey S, Hung MY, Huang SH, Hsu PT, Day CH,et al. Luteolin: A Natural Flavonoid Enhances the Survival of HUVECs against Oxidative Stress by Modulating AMPK/PKC Pathway. Am J Chin Med. 2019;47(3):541-557.
doi: 10.1142/S0192415X19500289.
107. Kasala ER, Bodduluru LN, Barua CC, Gogoi R. Antioxidant and antitumor efficacy of Luteolin, a dietary flavone on benzo(a)pyrene-induced experimental lung carcinogenesis. Biomed Pharmacother. 2016; 82:568-77.
doi: 10.1016/j.biopha.2016.05.042.
108. Wei B, Lin Q, Ji YG, Zhao YC, Ding LN, Zhou WJ, et al..Luteolin ameliorates rat myocardial ischaemia-reperfusion injury through activation of peroxiredoxin II. Br J Pharmacol. 2018; 175(16):3315-3332.
doi: 10.1111/bph.14367.
109. Fan W, Qian S, Qian P, Li X. Antiviral activity of luteolin against Japanese encephalitis virus. Virus Res. 2016; 220:112-6.
doi: 10.1016/j.virusres.2016.04.021.
110. Khetarpal N, Khanna I.Dengue Fever: Causes, Complications, and Vaccine Strategies. J Immunol Res. 2016; 2016:6803098. doi: 10.1155/2016/6803098.
111. Peng M, Watanabe S, Chan KWK, He Q, Zhao Y, Zhang Z, et al. Luteolin restricts dengue virus replication through inhibition of the proprotein convertase furin. Antiviral Res. 2017; 143:176-185.
doi: 10.1016/j.antiviral.2017.03.026
112. Yan H, Ma L, Wang H, Wu S, Huang H, Gu Z, et al. Luteolin decreases the yield of influenza A virus in vitro by interfering with the coat protein I complex expression.J Nat Med. 2019; 73(3):487-496
113. Zhang X, Du Q, Yang Y, Wang J, Dou S, Liu C, et al. The protective effect of Luteolin on myocardial ischemia/reperfusion (I/R) injury through TLR4/NF-κB/NLRP3 inflammasome pathway. Biomed Pharmacother. 2017; 91:1042-1052.
114. Yan Q, Li Y, Yan J, Zhao Y, Liu Y, Liu S. Luteolin improves heart preservation through inhibiting hypoxia-dependent L-type calcium channels in cardiomyocytes. Exp Ther Med. 2019; 17(3):2161-2171.
115. Luo Y, Shang P, Li D.Luteolin: A Flavonoid that Has Multiple Cardio-Protective Effects and Its Molecular Mechanisms. Front Pharmacol. 2017; 8:692.
116. Yan QF, Yan GF, Yang DK. Myocardial protective effects of luteolin on isolated rat heart in hypothermic preservation. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2012; 28(2):154-8.
117. Yan Q, Li Y, Yan J, Zhao Y, Liu Y, Liu S. Effects of luteolin on regulatory proteins and enzymes for myocyte calcium circulation in hypothermic preserved rat heart. Exp Ther Med. 2018; 15(2):1433-1441.
118. Hu J, Man W, Shen M, Zhang M, Lin J, Wang T, et al. Luteolin alleviates post-infarction cardiac dysfunction by up-regulating autophagy through Mst1 inhibition..J Cell Mol Med. 2016; 20(1):147-56.
119. Baiyun R, Li S, Liu B, Lu J, Lv Y, Xu J, et al. Luteolin-mediated PI3K/AKT/Nrf2 signaling pathway ameliorates inorganic mercury-induced cardiac injury. Ecotoxicol Environ Saf. 2018; 161:655-661.
120. Xu B, Li XX, He GR, Hu JJ, Mu X, Tian S, et al. Luteolin promotes long-term potentiation and improves cognitive functions in chronic cerebral hypoperfused rats. Eur J Pharmacol. 2010; 627(1-3):99-105.
121. Caltagirone C, Cisari C, Schievano C, Di Paola R, Cordaro M, Bruschetta G, Esposito E, Cuzzocrea S. Co-ultramicronized Palmitoylethanolamide/Luteolin in the Treatment of Cerebral Ischemia: from Rodent to Man.; Stroke Study Group.Transl Stroke Res. 2016;7(1):54-69.
122. Xu J, Wang H, Ding K, Zhang L, Wang C, Li T,et al. Luteolin provides neuroprotection in models of traumatic brain injury via the Nrf2-ARE pathway. Free Radic Biol Med. 2014; 71:186-95
Statistics
878 Views | 0 Downloads
How to Cite
SOROMOU, L. W. “A Review on Flavonoid Luteolin: Phytochemistry, Pharmacognosy and Pharmacological Activities”. Himalayan Journal of Health Sciences, Vol. 7, no. 2, June 2022, pp. 1-12, doi:10.22270/hjhs.v7i2.125.
Section
Original Articles